Transitions of Double-Stranded DNA Between the A- and B-Forms.

JOURNAL OF PHYSICAL CHEMISTRY B(2016)

引用 35|浏览16
暂无评分
摘要
The structure of double-stranded DNA (dsDNA) is sensitive to solvent conditions. In solution, B-DNA is the favored conformation under physiological conditions, while A-DNA is the form found under low water activity. The A-form is induced locally in some protein DNA complexes, and repeated transitions between the B- and A-forms have been proposed to generate the forces used to drive dsDNA into viral capsids during genome packaging. Here, we report analyses on previous molecular dynamics (MD) simulations on B-DNA, along with new MD simulations on the transition from A-DNA to B-DNA in solution. We introduce the A-B Index (ABI), a new metric along the A-B continuum, to quantify our results. When A-DNA is placed in an equilibrated solution at physiological ionic strength, there is no energy barrier to the transition to the B-form, which begins within about 1 ns. The transition is essentially complete within 5 ns, although occasionally a stretch of a few base pairs will remain A-like for up to similar to 10 ns. A comparison of four sequences with a range of predicted A-phobicities shows that more A-phobic sequences make the transition more rapidly than less A-phobic sequences. Simulations on dsDNA with a region of roughly one turn locked in the A-form allow-us to characterize the A/B junction, which has an average bend angle of 20-30 degrees. Fluctuations in this angle occur with characteristic times of about 10 ns.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要