Molecular-Level Understanding of the Encapsulation and Dissolution of Poorly Water-Soluble Ibuprofen by Functionalized Organic Nanotubes Using Solid-State NMR Spectroscopy.

JOURNAL OF PHYSICAL CHEMISTRY B(2016)

引用 23|浏览10
暂无评分
摘要
A comprehensive study of the encapsulation and dissolution of the poorly water-soluble drug ibuprofen (IBU) using two types of organic nanotubes (ONT-1 and ONT-2) was conducted. ONT-1 and ONT-2 had similar inner and outer diameters, but these surfaces were functionalized with different groups. IBU was encapsulated by each ONT via solvent evaporation. The amount of IBU in the ONTs was 9.1 and 29.2 wt % for ONT-1 and ONT-2, respectively. Dissolution of IBU from ONT-1 was very rapid, while from ONT-2 it was slower after the initial burst release. One-dimensional (1D) H-1, C-13, and two-dimensional (2D) H-1-C-13 solid-state NMR measurements using fast magic-angle spinning (MAS) at a rate of 40 kHz revealed the molecular state of the encapsulated IBU in each ONT. Extremely mobile IBU was observed inside the hollow nanosapce of both ONT-1 and ONT-2 using C-13 MAS NMR with a single pulse (SP) method. Interestingly, C-13 cross-polarization (CP) MAS NMR demonstrated that IBU also existed on the outer surface of both ONTs. The encapsulation ratios of IBU inside the hollow nanospaces versus on the outer surfaces were calculated by waveform separation to be approximately 1:1 for ONT-1 and 2:1 for ONT-2. Changes in C-13 chemical shifts showed the intermolecular interactions between the carboxyl group of IBU and the amino group on the ONT-2 inner surface. The cationic ONT-2 could form the stronger electrostatic interactions with IBU in the hollow nanosapce than anionic ONT-1. On the other hand, 2D H-1-13C NMR indicated that the hydroxyl groups of the glucose unit on the outer surface of the ONTs interacted with the carboxyl group of IBU in both ONT-1 and ONT-2. The changes in peak shape and chemical shift of the ONT glucose group after IBU encapsulation were larger in ONT-2 than in ONT-1, indicating a stronger interaction between IBU and the outer surface of ONT-2. The smaller amount of IBU encapsulation and rapid IBU dissolution from ONT-1 could be due to the weak interactions both at the outer and inner surfaces. Meanwhile, the stronger interaction between IBU and the inner surface of ONT-2 could suppress IBU dissolution, although the IBU on the outer surface of ONT-2 was released soon after dispersal in water. This study demonstrates that the encapsulation amount and the dissolution rates of poorly water-soluble drugs, a class which makes up the majority of new drug candidates, can be controlled using the functional groups on the surfaces of ONTs by considering the host guest interactions.
更多
查看译文
关键词
functionalized organic nanotubes,molecular-level,water-soluble,solid-state
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要