Enhanced tumor control with combination mTOR and PD-L1 inhibition in syngeneic oral cavity cancers.

CANCER IMMUNOLOGY RESEARCH(2016)

引用 73|浏览5
暂无评分
摘要
Significant subsets of patients with oral cancer fail to respond to single-agent programmed death (PD) blockade. Syngeneic models of oral cancer were used to determine if blocking oncogenic signaling improved in vivo responses to PD-L1 monoclonal antibody (mAb). Anti-PD-L1 enhanced durable primary tumor control and survival when combined with mTOR (rapamycin), but not in combination with MEK inhibition (PD901) in immunogenic MOC1 tumors. Conversely, PD-L1 mAb did not enhance tumor control in poorly immunogenic MOC2 tumors. Rapamycin enhanced expansion of peripheral antigen-specific CD8 T cells and IFN gamma production following ex vivo antigen stimulation. More CD8 T cells infiltrated and were activated after PD-L1 mAb treatment in mice with immunogenic MOC1 tumors, which were stable or increased by the addition of rapamycin, but suppressed when PD901 was added. Rapamycin increased IFN gamma production capacity in peripheral and tumor-infiltrating CD8 T cells. In vivo antibody depletion revealed a CD8 T-cell-dependent, and not NK cell-dependent mechanism of tumor growth inhibition after treatment with rapamycin and PD-L1 mAb, ruling out significant effects from NK cell-mediated antibody-dependent cellular cytotoxicity. Rapamycin also enhanced IFN gamma or PD-L1 mAb treatment-associated induction of MHC class I expression on MOC1 tumor cells, an effect abrogated by depleting infiltrating CD8 T cells from the tumor microenvironment. These data conflict with traditional views of rapamycin as a universal immunosuppressant, and when combined with evidence of enhanced antitumor activity with the combination of rapamycin and PD-L1 mAb, suggest that this treatment combination deserves careful evaluation in the clinical setting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要