Production of High-Purity Hydrogen and Carbon Dioxide Capture by Sorption Enhanced WGS Reaction Process

Advanced Materials Research(2014)

引用 0|浏览1
暂无评分
摘要
Global warming has become more and more serious, which is caused by greenhouse gases. Cutting down the emission of CO2 has already become one of the major research target in the world. This study is numerically investigating Thermal Swing Sorption Enhanced Reaction Process on water gas shift (WGS) reaction by Na2O-promoted alumina. According to Le Chateliers law, the forward reaction rates and conversion can be increased by removing some products selected. Therefore, this concept can be used to generate product of high-purity hydrogen. The purified H2 can be sent to gas turbine for generating electrical power or can be used for other energy source. Carbon dioxide can also be recovered and sequestrated to reduce greenhouse gas effects. The method of lines is utilized in simulation, combined with upwind differences, cubic spline approximation and LSODE of ODEPACK software to solve the problem. The concentration, temperature, and adsorption quantity in the bed are integrated with respect to time by LSODE of ODEPACK software. The simulation is stopped when the system reaches a cyclic steady state. In this study, we first simulate breakthrough curve of Na2O-promoted alumina cited from literatures to prove the accuracy of simulation program. The optimal operating conditions of the WGS TSA (temperature swing adsorption) single-bed six-process is obtained by varying operating variables, such as feed time and rinse time. Furthermore, WGS TSA single-bed six-process could achieve 99.89% purity of H2 (dry-basis) as the top product and 90.95% purity and 98.22% recovery of CO2 (dry-basis) as the bottom product.
更多
查看译文
关键词
carbon dioxide capture,carbon dioxide,hydrogen,reaction,high-purity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要