A multi-sensor plume height analysis of the 2009 Redoubt eruption

Journal of Volcanology and Geothermal Research(2013)

引用 9|浏览12
暂无评分
摘要
During an explosive volcanic eruption, accurately determining the height of a volcanic plume or cloud is essential to accurately forecast its motion because volcanic ash transport and dispersion models require the initial plume height as an input parameter. The direct use of satellite infrared temperatures for height determination, one of the most commonly employed methods at the Alaska Volcano Observatory, often does not yield unique solutions for height. This result is documented here for the 2009 eruption of Redoubt Volcano. Satellite temperature heights consistently underestimated the height of ash plumes in comparison to other methods such as ground-based radar and Multi-angle Imaging SpectroRadiometer (MISR) stereo heights. For ash plumes below the tropopause, increasing transparency of a plume begins to affect the accuracy of simple temperature height retrievals soon after eruption. With decreasing opacity, plume temperature heights become increasingly inaccurate. Comparison with dispersion models and aircraft gas flight data confirms that radar and MISR stereo heights are more accurate than basic satellite temperature heights. Even in the cases in which satellite temperature results appeared to be relatively accurate (e.g., for plumes below the tropopause), a mixed signal of plume and ground radiation still presented an issue for almost every event studied. This was true regardless of the fact that a band differencing method was used to remove presumably translucent pixels. The data presented here make a strong case for the use of data fusion in volcano monitoring, as there is a need to confirm satellite temperature heights with other height data. If only basic satellite temperature heights are available for a given eruption, then these heights must be considered with a significant margin of error.
更多
查看译文
关键词
Remote sensing,Redoubt,Ash clouds,MISR,MODIS,AVHRR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要