Electron–Phonon Coupling Effect on Charge Transfer in Nanostructures

Journal of Physical Chemistry C(2013)

引用 6|浏览7
暂无评分
摘要
Two simple quantum electron networks are considered: one has an interference structure, and one is a simple chain. The network is coupled at one edge site to a metal reservoir that works as a sink for arriving charges. When the electron reaches the edge site and has an energy at or above the Fermi level of the metal sink, we assume that it will be absorbed. The adiabatic electron phonon coupling will lower the energy level of the last site (before the sink) when the electron enters it. When this polarization-corrected energy is lower than the Fermi level, the absorption into the sink has to be activated above the metal Fermi sea and the absorbing rate will be slowed down.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要