QENS investigation of proton confined motions in hydrated perfluorinated sulfonic membranes and self-assembled surfactants

EPJ Web of Conferences(2015)

引用 17|浏览4
暂无评分
摘要
We report on QuasiElastic Neutron Scattering (QENS) investigations of the dynamics of protons and water molecules confined in nanostructured perfluorinated sulfonic acid (PFSA) materials, namely a commercial Aquivion membrane and the perfluorooctane sulfonic acid (PFOS) surfactant. The former is used as electrolyte in low-temperature fuel cells, while the latter forms mesomorphous self-assembled phases in water. The dynamics was investigated as a function of the hydration level, in a wide time range by combining time-of-flight and backscattering incoherent QENS experiments. Analysis of the quasielastic broadening revealed for both systems the existence of localized translational diffusive motions, fast rotational motions and slow hopping of protons in the vicinity of the sulfonic charges. The characteristic times and diffusion coefficients have been found to exhibit a very similar behaviour in both membrane and surfactant structures. Our study provides a comprehensive picture of the proton motion mechanisms and the dynamics of confined water in model and real PFSA nanostructures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要