EFFECT OF SUBSTRATE STIFFNESS ON THE STRUCTURE AND FUNCTION OF CELLS

Biophysical Reviews and Letters(2011)

引用 3|浏览7
暂无评分
摘要
Most biological tissues are soft viscoelastic materials with elastic moduli ranging from approximately 100 to 100,000 Pa. Recent studies have examined the effect of substrate rigidity on cell structure and function, and many, but not all cell types exhibit a strong response to substrate stiffness. Some blood cells such as platelets and neutrophils have indistinguishable structures on hard and soft materials as long as they are sufficiently adhesive, whereas many cell types, including fibroblasts and endothelial cells spread much more strongly on rigid compared to soft substrates. A few cell types such as neurons appear to extend better on very soft materials. The different response of astrocytes and neurons to the stiffness of their substrate results in preferential growth of neurons on soft gels and astrocytes on hard gels, and suggests that preventing rigidification of damaged central nervous system tissue after injury may have utility in wound healing. How cells sense substrate stiffness is unknown. One candidate protein, filamin A, which responds to externally derived stresses, was tested in melanoma cells. Cells devoid of filamin A retain the ability to sense substrate stiffness, suggesting that other proteins are required for stiffness sensing.
更多
查看译文
关键词
filamin,cytoskeleton
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要