Effect of neutron irradiation on defect evolution in Ti 3 SiC 2 and Ti 2 AlC

Journal of Nuclear Materials(2016)

引用 75|浏览13
暂无评分
摘要
Herein we report on the characterization of defects formed in polycrystalline Ti3SiC2 and Ti2AlC samples exposed to neutron irradiation – up to 0.1 displacements per atom (dpa) at 350 ± 40 °C or 695 ± 25 °C, and up to 0.4 dpa at 350 ± 40 °C. Black spots are observed in both Ti3SiC2 and Ti2AlC after irradiation to both 0.1 and 0.4 dpa at 350 °C. After irradiation to 0.1 dpa at 695 °C, small basal dislocation loops, with a Burgers vector of b = 1/2 [0001] are observed in both materials. At 9 ± 3 and 10 ± 5 nm, the loop diameters in the Ti3SiC2 and Ti2AlC samples, respectively, were comparable. At 1 × 1023 loops/m3, the dislocation loop density in Ti2AlC was ≈1.5 orders of magnitude greater than in Ti3SiC2, at 3 × 1021 loops/m3. After irradiation at 350 °C, extensive microcracking was observed in Ti2AlC, but not in Ti3SiC2. The room temperature electrical resistivities increased as a function of neutron dose for all samples tested, and appear to saturate in the case of Ti3SiC2. The MAX phases are unequivocally more neutron radiation tolerant than the impurity phases TiC and Al2O3. Based on these results, Ti3SiC2 appears to be a more promising MAX phase candidate for high temperature nuclear applications than Ti2AlC.
更多
查看译文
关键词
Ti3SiC2,Ti2AlC,MAX phases,Neutron irradiation,Dislocation loops
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要