Quantum Versus Classical Protons In Pure And Salty Ice Under Pressure

PHYSICAL REVIEW B(2016)

引用 50|浏览16
暂无评分
摘要
It is generally accepted that nuclear quantum effects (NQEs) trigger the transition to the nonmolecular form of ice under increasing pressure. This picture is challenged in salty ice, where Raman scattering measurements up to 130 GPa of molecular ice VII containing NaCl or LiCl impurities show that the transition pressure to the symmetric phase ice X is shifted up by about 30 GPa, even at small salt concentrations. We address the question of how the inclusion of salt induces the drastic reduction of NQEs by selectively including NQEs in ab initio calculations of ice in the presence of distinct ionic impurities. We quantitatively show that this is mainly a consequence of the electric field generated by the ions. We propose a simple model that is able to capture the essence of this phenomenon, generalizing this picture to other charged defects and for any concentration. This result is potentially generalizable to most "dirty" ices in which the electric field due to the doping is much more significant than local lattice distortions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要