High-density linkage mapping of yield components and epistatic interactions in maize with doubled haploid lines from four crosses

Molecular Breeding(2013)

引用 10|浏览11
暂无评分
摘要
Grain yield (GY) is a genetically complex and physiologically multiplicative trait which can be decomposed into the components kernel number (KN) and 100-kernel weight (HKW). Genetic analysis of these less complex yield component traits may give insights into the genetic architecture and predictive ability of complex traits. Here, we investigated how the incorporation of component traits and epistasis in quantitative trait locus (QTL) mapping approaches influences the accuracy of GY prediction. High-density genetic maps with 7,000–10,000 polymorphic single nucleotide polymorphisms were constructed for four biparental populations. The populations comprised between 99 and 227 doubled haploid maize lines which were phenotyped in field trials in two environments. Heritability was highest for HKW (88–89 %), intermediate for KN (72–80 %), and lowest for GY (64–83 %). Mapped QTL explained in total 21–55 %, 22–67 %, and 24–75 % of the genotypic variance for GY, KN, and HKW, respectively. Support intervals of QTL were short, indicating that QTL were located with high precision. Co-located QTLs with same parental origin of favorable alleles were detected within populations for different traits and between populations for the same traits. Using GY predictions based on the detected QTL, prediction accuracies ( r ) determined by cross validation ranged from 0.18 to 0.52. Epistatic models did not outperform the corresponding additive models. In conclusion, models based on QTL positions of component traits support the identification of favorable alleles for multiplicative traits and provide a basis to select superior inbred lines by marker-assisted breeding.
更多
查看译文
关键词
QTL,High-density,Epistasis,Maize,Grain yield
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要