Fluorite REE characteristics of the Diyanqinamu Mo deposit, Inner Mongolia, China

Chinese Journal of Geochemistry(2015)

引用 6|浏览1
暂无评分
摘要
The Diyanqinamu Mo deposit, a newly discovered porphyry deposit in the northern-central part of the Great Xing’an Range, Inner Mongolia, China, is characterized by widely distributed fluorite. It is important to note that almost all the fluorite that is paragenetic with molybdenite is purple. The Tb/Ca–Tb/La ratios of these purple fluorite samples show that they have a hydrothermal origin. The unidirectional solidification texture at the apex of the aplitic granite and the low F contents in the andesite suggest that most of F in fluorite was derived from granitic melts. These observations suggest that the fluorite was related to the magmatic-hydrothermal fluids. All the fluorite separates have consistent total REE contents with LREE-depleted, HREE-enriched, negative Eu anomaly, unapparent Ce anomaly and positive Y anomaly. These characteristics are significantly different than those of country granite, andesite and tuff whole-rock. The positive Y anomaly of the fluorite separates implies that the hydrothermal fluids migrated a long distance, as suggested by the fact that the fluorite-molybdenite veins were mostly hosted in andesite and tuff, far from the Mo ore-forming granites. The features of LREE-depleted and HREE-enriched fluorite are due to the REE-complex in the F-enriched fluids during migration. The stronger negative Eu anomaly of fluorite than those of country rocks suggests that the Eu anomaly of the original hydrothermal fluid was enhanced by the high temperature (generally above 200 or 250 °C). The widespread magnetite in the studied deposit indicates that the magmatic-hydrothermal fluid was oxidized at early stage. On the other hand, the pyrite was also paragenetic, with the molybdenite and unapparent Ce anomaly implying that the hydrothermal fluid probably experienced oxygen fugacity decreasing during migration, which is important for Mo mineralization.
更多
查看译文
关键词
Fluorite, Rare earth elements, Geological implications, Diyanqinamu Mo deposit, Inner Mongolia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要