Welcome to the 2014 volume of Smart Materials and Structures

SMART MATERIALS AND STRUCTURES(2014)

引用 0|浏览5
暂无评分
摘要
Welcome to Smart Materials and Structures (SMS). Smart materials and structures are comprised of structural matter that responds to a stimulus. These materials can be controlled or have properties that can be altered in a prescribed manner. Smart materials generate non-traditional forms of transduction. We are all familiar with common forms of transduction, electromechanical motors. Lorenz's forces utilize permanent and variable magnets, controlled by current, to generate magnetically generated forces that oppose each other. Utilizing this simple principal we have advanced the industrial revolution of the 19th Century by the creation of the servo-mechanism. Controlled velocity and position generation systems that have automated manufacturing, our machines and the very environs in which we dwell. Smart materials often rely on a variety of new and different methods of transduction. Piezoelectric, magnetostrictive, electrostrictive, and phase-change materials, such as shape memory alloys, are among the most common smart materials. Other approaches such as polymer actuators that rely on complex three-dimensional chemical-based composites are also emerging. The trinity of engineering research is analysis, simulation and experimentation. To perform analyses we must understand the physical phenomena at hand in order to develop a mathematical model for the problem. These models form the basis of simulation and complex computational modeling of a system. It is from these models that we begin to expand our understanding about what is possible, ultimately developing simulation-based tools that verify new designs and insights. Experimentation offers the opportunity to verify our analyses and simulations in addition to providing the 'proof of the pudding' so to speak. But it is our ability to simulate that guides us and our expectations, predicting the behavior of what we may see in the lab or in a prototype. Experimentation ultimately provides the feedback to our modeling efforts. We capture all elements of this trinity in the journal for both smart materials and structures, devices and mechanisms, which are being developed by our community. Innovations often arise as we find new ways to incorporate and control materials. We can utilize these unusual properties to design and fabricate material architectures for transduction unlike anything done in the past. The distributed nature of the material transduction lends itself to new ways of thinking, making the actuators integral to the structure, developing new formulations for controls and changing how we design power electronics for the system. Once again the 2013 volume of SMS surpassed all expectations and grew by 38% while maintaining a high reject rate of almost 60% and high impact factor of 2.024. We are delighted that more and more researchers are choosing SMS to showcase their work. It also means that this year there will be an increased emphasis on selecting only work of the highest interest and quality for publication. A few months ago SMS moved to ScholarOne, our new state-of-the-art editorial management system, in order to help us to cope with our ever-increasing copy flow and enable us to continue providing our authors and referees with a modern, fast and efficient process. From now on all manuscripts should be submitted to us at http://mc04.manuscriptcentral.com/sms-iop. Thanks to the new system, we are now able to run every submission through our plagiarism software, Crosscheck. Last year, SMS published two exciting focus issues called 'Bioinspired smart materials and systems' and 'Auxetics in smart systems and structures'. Focus issues in SMS are designed to provide a timely snap shot of a particular topic and are popular with both our readers and contributing authors. In 2013, SMS also published two special issues. (1) The annual SMASIS 2013 special issue covering the multifunctional materials, active materials, and bioinspired materials symposia and including, for the first time, the energy harvesting symposium. (2) A special issue called 'Electromechanically active polymer (EAP) transducers: research in Europe', a collection of articles from the European Scientific Network for Artificial Muscles—ESNAM group. This year, look out for focus issues put together by the editorial board on 'fluidic artificial muscles' and 'active materials and structures for origami engineering'. We will also continue to run a busy program of Topical Reviews, which are often among the most cited and most downloaded articles in the journal. Congratulations to Ganesh Raghunath and his team (University of Maryland) who won the Smart Materials and Structures prize for the best paper at SMASIS 2013, and to Kyle Mulligan and his team (University of Sherbrooke) who won our best student paper prize at Cansmart 2013. We were delighted with the news last year that ASME awarded two of its prestigious annual best paper awards to articles published in SMS: the 2013 ASME 'Adaptive Structures and Material Systems Best Paper Award in Adaptive Materials and Material Systems' went to Donghyeon Ryu and Kenneth J Loh for their article 'Strain sensing using photocurrent generated by photoactive P3HT-based nanocomposites'. The 2013 ASME 'Adaptive Structures and Material Systems Best Paper Award in Structural Dynamics and Control' went to Julianna Abel, Jonathan Luntz and Diann Brei for their article 'A two-dimensional analytical model and experimental validation of garter stitch knitted shape memory alloy actuator architecture'. Finally, may I take this opportunity to thank our fantastic Editorial board of Associate Editors who tirelessly oversee the review of each submitted article and give their invaluable advice, helping to develop and shape the journal. Welcome to Professor Alper Erturk who has recently joined us. We also acknowledge and thank Professor Andrea Del Grosso, Professor Sami Masri, Professor Seung Jo Kim and Professor Christian Boller who retired from the Board last year after many years in service as Associate Editors. Associate Editors in 2013: Professor G Akhras, Royal Military College of Canada, Ontario, Canada Professor C Boller, University of Saarland, Saarbrucken, Germany Fraunhofer-Institut fur Zerstorungsfreie Prufverfahren, Dresden, Germany Professor J Cagnol, Ecole Centrale Paris, France Professor G Carman, University of California-Los Angeles, USA Professor S-B Choi, Inha University, Incheon, Korea Professor S H Choi, NASA Langley Research Center, Hampton, VA, USA Professor A Del Grosso, Universita degli Studi di Genova, Italy Professor A Erturk, Georgia Institute of Technology, GA, USA Professor U Gabbert, Universitat Magdeburg, Germany Professor A Guemes, Universidad Politecnica de Madrid, Spain Professor S Gopalakrishnan, Indian Institute of Science, Bangalore, India Professor J Kim, Inha University, Incheon, Korea Professor K J Kim, University of Nevada, Reno, USA Professor S J Kim, Seoul National University, Korea Professor D Lagoudas, Texas A&M University, College Station, USA Professor R Lammering, Helmut-Schmidt-Universitat/Universitat der Bundeswehr Hamburg, Hamburg, Germany Professor C K Lee, National Taiwan University, Taiwan Professor W Li, University of Wollongong, Australia Professor W H Liao, Chinese University of Hong Kong, China Professor Y Liu, Harbin Institute of Technology, China Professor C S Lynch, University of California-Los Angeles, USA Professor S Masri, University of Southern California, Los Angeles, USA Professor W M Ostachowicz, Polish Academy of Sciences, Gdansk, Poland Professor K Peters, North Carolina State University, Raleigh, USA Professor M Shahinpoor, University of Maine, Orono, USA Professor H Sodano, University of Florida, Gainsville, USA Professor G Song, University of Houston, TX, USA Professor W J Staszewski, AGH University of Science and Technology, Krakow, Poland Professor N Takeda, University of Tokyo, Japan Professor D-H Wang, Chongqing University, China Professor Q Wang, University of Manitoba, Canada Professor N M Wereley, University of Maryland, College Park, USA Professor W J Wu, National Taiwan University, Taiwan.
更多
查看译文
关键词
smart materials,structures
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要