Fancd2 Influences Replication Fork Processes And Genome Stability In Response To Clustered Dsbs

CELL CYCLE(2015)

引用 20|浏览6
暂无评分
摘要
Fanconi Anemia (FA) is a cancer predisposition syndrome and the factors defective in FA are involved in DNA replication, DNA damage repair and tumor suppression. Here, we show that FANCD2 is critical for genome stability maintenance in response to high-linear energy transfer (LET) radiation. We found that FANCD2 is monoubiquitinated and recruited to the sites of clustered DNA double-stranded breaks (DSBs) specifically in S/G2 cells after high-LET radiation. Further, FANCD2 facilitated the repair of clustered DSBs in S/G2 cells and proper progression of S-phase. Furthermore, lack of FANCD2 led to a reduced rate of replication fork progression and elevated levels of both replication fork stalling and new origin firing in response to high-LET radiation. Mechanistically, FANCD2 is required for correct recruitment of RPA2 and Rad51 to the sites of clustered DSBs and that is critical for proper processing of clustered DSBs. Significantly, FANCD2-decifient cells exhibited defective chromosome segregation, elevated levels of chromosomal aberrations, and anchorage-independent growth in response to high-LET radiation. These findings establish FANCD2 as a key factor in genome stability maintenance in response to high-LET radiation and as a promising target to improve cancer therapy.
更多
查看译文
关键词
clustered DSBs,DNA replication,FANCD2,genome instability,high-LET radiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要