Modification of Astrocyte Metabolism as an Approach to the Treatment of Epilepsy: Triheptanoin and Acetyl- l -Carnitine

Neurochemical Research(2015)

引用 12|浏览14
暂无评分
摘要
Epilepsy is a severe neurological disorder characterized by altered electrical activity in the brain. Important pathophysiological mechanisms include disturbed metabolism and homeostasis of major excitatory and inhibitory neurotransmitters, glutamate and GABA. Current drug treatments are largely aimed at decreasing neuronal excitability and thereby preventing the occurrence of seizures. However, many patients are refractory to treatment and side effects are frequent. Temporal lobe epilepsy (TLE) is the most common type of drug-resistant epilepsy in adults. In rodents, the pilocarpine-status epilepticus model reflects the pathology and chronic spontaneous seizures of TLE and the pentylenetetrazole kindling model exhibits chronic induced limbic seizures. Accumulating evidence from studies on TLE points to alterations in astrocytes and neurons as key metabolic changes. The present review describes interventions which alleviate these disturbances in astrocyte–neuronal interactions by supporting mitochondrial metabolism. The compounds discussed are the endogenous transport molecule acetyl- l -carnitine and the triglyceride of heptanoate, triheptanoin. Both provide acetyl moieties for oxidation in the tricarboxylic acid cycle whereas heptanoate is also provides propionyl-CoA, which after carboxylation can produce succinyl-CoA, resulting in anaplerosis—the refilling of the tricarboxylic acid cycle.
更多
查看译文
关键词
metabolism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要