Graphene metal oxide composite supercapacitor electrodes

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B(2012)

引用 34|浏览14
暂无评分
摘要
This study presents composite electrode materials based on graphene oxide (GO) and transition metal oxide nanostructures for supercapacitor applications. Electrophoretic deposition of GO on a conductive substrate was used to form reduced graphene oxide (rGO) films through chemical reduction. The specific capacitance of the rGO was calculated up to 117 F/g at 100 mV/s scan rate from KOH (1 M) electrolyte using an Ag/AgCl reference electrode. The strong interaction of GO with Co3O4 and MnO2 nanostructures was demonstrated in the self-assembled Langmuir-Blodgett monolayer composite, showing the potential to fabricate thin film supercapacitor electrodes without using binder materials. This two-step process is nontoxic and scalable and holds promise for improved energy density from redox capacitance in comparison with the conventional double layer supercapacitors. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4712537]
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要