Experimental Model-Based Aeroelastic Control for Flutter Suppression and Gust-Load Alleviation

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS(2012)

引用 19|浏览1
暂无评分
摘要
This paper introduces an experimental model-based feedback-control framework for flutter suppression and gust load alleviation. With the proposed experimental model-based feedback-control framework, the flexible dynamics can be consistently estimated via system-identification algorithms, and its undesirable effects are suppressed through a robust feedback-control law while the whole system's stability is being maintained. Therefore, the resilience of the flight control law in the presence of aeroelastic/aeroservoelastic interactions can be increased by the suppression of the aircraft's structural vibrations induced by the flutter mechanism and/or gust perturbation. The proposed experimental model-based feedback-control technique is demonstrated on the SuperSonic SemiSpan Transport wind-tunnel model for flutter suppression and gust-load alleviation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要