Tin Networked Electrode Providing Enhanced Volumetric Capacity and Pressureless Operation for All-Solid-State Li-Ion Batteries

JOURNAL OF THE ELECTROCHEMICAL SOCIETY(2015)

引用 35|浏览15
暂无评分
摘要
Pure tin (Sn) metal nano-powder is investigated as a high capacity negative electrode for rechargeable all-solid-state Li-ion batteries. Sn is used to form a fully dense network intertwining with solid electrolyte negating necessary conductive additive. Galvanostatic cycling of the Sn composite electrode delivers a reversible capacity 800 mAh g(-1) of Sn with a constant coulombic efficiency over 99.2%. We report on the effect of pressure and rate upon the delithiation mechanics, drawing correlations between Sn volume increase factors and stress accumulation over the course of Sn-Li phase transformations. Due to the fabricated electrode microstructure, we are able to operate the cell at ambient pressure conditions - the next step toward commercialization of the solid-state battery. We believe that this initial work provides new opportunities to study the electrochemical expansion of Sn with the inclusion of rigid electrolyte particles. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要