Development of the ITER baseline inductive scenario

NUCLEAR FUSION(2014)

引用 71|浏览16
暂无评分
摘要
Sustainment of Q similar to 10 operation with a fusion power of similar to 500 MW for several hundred seconds is a key mission goal of the ITER Project. Past calculations and simulations predict that these conditions can be produced in high-confinement mode operation (H-mode) at 15 MA relying on only inductive current drive. Earlier development of 15 MA baseline inductive plasma scenarios provided a focal point for the ITER Design Review conducted in 2007-2008. In the intervening period, detailed predictive simulations, supported by experimental demonstrations in existing tokamaks, allow us to assemble an end-to-end specification of this scenario consistent with the final design of the ITER device. Simulations have encompassed plasma initiation, current ramp-up, plasma burn and current ramp-down, and have included density profiles and thermal transport models producing temperature profiles consistent with edge pedestal conditions present in current fusion experiments. These quasi-stationary conditions are maintained due to the presence of edge-localized modes that limit the edge pressure. High temperatures and densities in the pedestal region produce significant edge bootstrap current that must be considered in modelling of feedback control of shape and vertical stability. In this paper we present new results of transport simulations fully consistent with the final ITER design that remain within allowed limits for the coil system and power supplies. These self-consistent simulations increase our confidence in meeting the challenges of the ITER program.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要