Effects of Core Microstructure on Structure and Dynamics of Star Polymer Melts: From Polymeric to Colloidal Response

MACROMOLECULES(2014)

引用 50|浏览21
暂无评分
摘要
The structure and linear viscoelastic behavior of four different model star polymer melts were investigated experimentally. The star polymers were prepared via different synthetic routes based on atom transfer radical polymerization (ATRP). Stars with small elongated (linear backbone) cores exhibited slight differences in the asymmetry of the core, which however did not affect the rheological properties significantly. The relaxation behavior of these stars with an asymmetric core was well-described by available tube models. On the other hand, stars with large cross-linked cores exhibited a core-shell morphology and their stress relaxation was dominated by a power-law decay over about 8 decades, akin to gel-like soft systems. This behavior reflected their liquid-like ordering and small intercore distances, and bares analogueies to that of interpenetrating soft colloids and microgels.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要