Ultrafast quasiparticle dynamics in superconducting iron pnictide CaFe1.89Co0.11As2

mag(2012)

引用 5|浏览26
暂无评分
摘要
Nonequilibrium quasiparticle relaxation dynamics is reported in superconducting CaFe1.89Co0.11As2 single crystal using femtosecond time-resolved pump-probe spectroscopy. The carrier dynamics reflects a three-channel decay of laser deposited energy with characteristic time scales varying from few hundreds of femtoseconds to order of few nanoseconds where the amplitudes and time-constants of the individual electronic relaxation components show significant changes in the vicinity of the spin density wave (T_SDW ~ 85 K) and superconducting (T_SC ~ 20 K) phase transition temperatures. The quasiparticles dynamics in the superconducting state reveals a charge gap with reduced gap value of 2$\Delta$_0/k_BT_SC ~ 1.8. We have determined the electron-phonon coupling constant $\lemda$ to be ~ 0.14 from the temperature dependent relaxation time in the normal state, a value close to those reported for other types of pnictides. From the peculiar temperature-dependence of the carrier dynamics in the intermediate temperature region between the superconducting and spin density wave phase transitions, we infer a temperature scale where the charge gap associated with the spin ordered phase is maximum and closes on either side while approaching the two phase transition temperatures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要