New Prospects in Fixed Target Searches for Dark Forces with the SeaQuest Experiment at Fermilab

S Gardner,R J Holt, A Tadepalli

PHYSICAL REVIEW D(2016)

引用 68|浏览3
暂无评分
摘要
An intense 120 GeV proton beam incident on an extremely long iron target generates enormous numbers of light-mass particles that also decay within that target. If one of these particles decays to a final state with a hidden gauge boson, or if such a particle is produced as a result of the initial collision, then that weakly interacting hidden-sector particle may traverse the remainder of the target and be detected downstream through its possible decay to an e(+)e(-), mu(+)mu(-), or pi(+)pi(-) final state. These conditions can be realized through an extension of the SeaQuest experiment at Fermilab, and in this initial investigation we consider how it can serve as an ultrasensitive probe of hidden vector gauge forces, both Abelian and non-Abelian. A light, weakly coupled hidden sector may well explain the dark matter established through astrophysical observations, and the proposed search can provide tangible evidence for its existence-or, alternatively, constrain a "sea" of possibilities.
更多
查看译文
关键词
seaquest experiment,dark forces,target searches
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要