Automated motion detection from space in sea surveilliance

Proceedings of SPIE(2015)

引用 4|浏览5
暂无评分
摘要
The Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) carried by the Advanced Land-Observing Satellite (ALOS) was designed to generate worldwide topographic data with its high-resolution and stereoscopic observation. PRISM performs along-track (AT) triplet stereo observations using independent forward (FWD), nadir (NDR), and backward (BWD) panchromatic optical line sensors of 2.5m ground resolution in swaths 35 km wide. The FWD and BWD sensors are arranged at an inclination of +/- 23.8 degrees from NDR. In this paper, PRISM images are used under a new perspective, in security domain for sea surveillance, based on the sequence of the triplet which is acquired in a time interval of 90 sec (45 sec between images). An automated motion detection algorithm is developed allowing the combination of encompassed information at each instant and therefore the identification of patterns and trajectories of moving objects on sea; including the extraction of geometric characteristics along with the speed of movement and direction. The developed methodology combines well established image segmentation and morphological operation techniques for the detection of objects. Each object in the scene is represented by dimensionless measure properties and maintained in a database to allow the generation of trajectories as these arise over time, while the location of moving objects is updated based on the result of neighbourhood calculations. Most importantly, the developed methodology can be deployed in any air borne (optionally piloted) sensor system with along the track stereo capability enabling the provision of near real time automatic detection of targets; a task that cannot be achieved with satellite imagery due to the very intermittent coverage.
更多
查看译文
关键词
ALOS,PRISM,stereo mapping,satellite images,image processing,automated motion detection,sea surveillance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要