Thermal Buckling Behaviour of Angle-Ply Laminated Composite Plate with Multi-Pole Hole

American Journal of Materials Science(2014)

引用 23|浏览1
暂无评分
摘要
In this present article, we considered thermal buckling analysis of symmetric and antisymmetric cross-ply laminated hybrid composite plates with an inclined multipole hole. Two shear deformable finite element models, one based on first-order shear deformation theory with variational energy method and the other based on higher order shear deformation theory, are employed to obtain thermal buckling solutions. The eight-node Lagrangian finite element technique is employed for obtaining the thermal buckling temperatures of hybrid composite laminates. Results show that the temperature rise are affected by the ratio of h/b for both symmetric and antisymmetric cases, while hole diameter shows, buckling temperature remains almost constant for both symmetric and anti-symmetric plates. The effect of various layers, plate thickness, and the number of holes also affect the bulking temperature for both symmetric and anitsymmetric case. More the size of the geometric defect is less important the buckling load will be. Thus, the amplification factor N⁄ grows with the increase of the ply thickness. The effects of crack size and lay-up sequences on the thermal buckling temperatures for symmetric and antisymmetric plates are also investigated for angular oriented ply laminated composite. The results are also shown in graphical form by considering the various boundary conditions.
更多
查看译文
关键词
finite element analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要