Neutron Spectroscopic Study Of Crystalline Electric Field Excitations In Stoichiometric And Lightly Stuffed Yb2ti2o7

PHYSICAL REVIEW B(2015)

引用 76|浏览7
暂无评分
摘要
Time-of-flight neutron spectroscopy has been used to determine the crystalline electric field (CEF) Hamiltonian, eigenvalues and eigenvectors appropriate to the J = 7/2 Yb3+ ion in the candidate quantum spin ice pyrochlore magnet Yb2Ti2O7. The precise ground state (GS) of this exotic, geometrically frustrated magnet is known to be sensitive to weak disorder associated with the growth of single crystals from the melt. Such materials display weak "stuffing," wherein a small proportion, approximate to 2%, of the nonmagnetic Ti4+ sites are occupied by excess Yb3+. We have carried out neutron spectroscopic measurements on a stoichiometric powder sample of Yb2Ti2O7, as well as a crushed single crystal with weak stuffing and an approximate composition of Yb2+xTi2-xO7+y with x = 0.046. All samples display three CEF transitions out of the GS, and the GS doublet itself is identified as primarily composed of m(J) = +/- 1/2, as expected. However, stuffing at low temperatures in Yb2+xTi2-xO7+y induces a similar finite CEF lifetime as is induced in stoichiometric Yb2Ti2O7 by elevated temperature. We conclude that an extended strain field exists about each local " stuffed" site, which produces a distribution of random CEF environments in the lightly stuffed Yb2+xTi2-xO7+y, in addition to producing a small fraction of Yb ions in defective environments with grossly different CEF eigenvalues and eigenvectors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要