Strong Ground Motion Estimation

mag(2012)

引用 3|浏览5
暂无评分
摘要
At the time of its founding, only a few months after the great 1906 M 7.7 San Francisco Earthquake, the Seismological Society of America noted in their timeless statement of purpose “that earthquakes are dangerous chiefly because we do not take adequate precautions against their effects, whereas it is possible to insure ourselves against damage by proper studies of their geographic distribution, historical sequence, activities, and effects on buildings.” Seismic source characterization, strong ground motion recordings of past earthquakes, and physical understanding of the radiation and propagation of seismic waves from earthquakes provide the basis to estimate strong ground motions to support engineering analyses and design to reduce risks to life, property, and economic health associated with earthquakes. When a building is subjected to ground shaking from an earthquake, elastic waves travel through the structure and the building begins to vibrate at various frequencies characteristic of the stiffness and shape of the building. Earthquakes generate ground motions over a wide range of frequencies, from static displacements to tens of cycles per second [Hertz (Hz)]. Most structures have resonant vibration frequencies in the 0.1 Hz to 10 Hz range. A structure is most sensitive to ground motions with frequencies near its natural resonant frequency. Damage to a building thus depends on its properties and the character of the earthquake ground motions, such as peak acceleration and velocity, duration, frequency content, kinetic energy, phasing, and spatial coherence. Strong ground motion estimation must provide estimates of all these ground motion parameters as well as realistic ground motion time histories needed for nonlinear dynamic analysis of structures to engineer earthquake-resistant buildings and critical structures, such as dams, bridges, and lifelines. Strong ground motion estimation is a relatively new science. Virtually every M > 6 earthquake in the past 35 years that provided new strong ground motion recordings produced a paradigm shift in strong motion seismology. The 1979 M 6.9 Imperial Valley, California, earthquake showed that rupture velocities could exceed shear-wave velocities over a significant portion of a fault, and produced a peak vertical acceleration > 1.5 g (Spudich and Cranswick, 1984; Archuleta; 1984). The 1983 M 6.5 Coalinga, California, earthquake revealed a new class of seismic sources, blind thrust faults (Stein and Ekström,
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要