The Detector System of The Daya Bay Reactor Antineutrino Experiment

F. P. An,J. Z. Bai, A. B. Balantekin, H. R. Band,D. Beavis, W. Beriguete, M. Bishai, S. Blyth,R. L. Brown, I. Butorov, D. Cao,G. F. Cao,J. Cao, R. Carr,W. R. Cen,W. T. Chan,Y. L. Chan,J. F. Chang,L. C. Chang,Y. Chang,C. Chasman,H. Y. Chen,H. S. Chen,M. J. Chen,Q. Y. Chen,S. J. Chen,S. M. Chen,X. C. Chen,X. H. Chen,X. S. Chen,Y. X. Chen,Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng,J. J. Cherwinka,S. Chidzik,K. Chow, M. C. Chu,J. P. Cummings, J. de Arcos,Z. Y. Deng, X. F. Ding, Y. Y. Ding,M. V. Diwan,L. Dong,J. Dove,E. Draeger,X. F. Du,D. A. Dwyer,W. R. Edwards,S. R. Ely, S. D. Fang,J. Y. Fu,Z. W. Fu,L. Q. Ge, V. Ghazikhanian,R. Gill, J. Goett,M. Gonchar,G. H. Gong,H. Gong, Y. A. Gornushkin, M. Grassi, L. S. Greenler, W. Q. Gu,M. Y. Guan, R. P. Guo, X. H. Guo,R. W. Hackenburg,R. L. Hahn,R. Han,S. Hans, M. He, Q. He, W. S. He,K. M. Heeger,Y. K. Heng,A. Higuera,P. Hinrichs,T. H. Ho,M. Hoff,Y. K. Hor,Y. B. Hsiung,B. Z. Hu,L. M. Hu,L. J. Hu, T. Hu,W. Hu,E. C. Huang,H. Z. Huang,H. X. Huang,P. W. Huang,X. Huang,X. T. Huang,P. Huber,G. Hussain,Z. Isvan,D. E. Jaffe,P. Jaffke,K. L. Jen, S. Jetter,X. P. Ji,X. L. Ji,H. J. Jiang,W. Q. Jiang, J. B. Jiao,R. A. Johnson,J. Joseph,L. Kang,S. H. Kettell,S. Kohn,M. Kramer,K. K. Kwan,M. W. Kwok,T. Kwok,C. Y. Lai,W. C. Lai,W. H. Lai,T. J. Langford,K. Lau,L. Lebanowski,J. Lee,M. K. P. Lee,R. T. Lei,R. Leitner,J. K. C. Leung,K. Y. Leung, C. A. Lewis,B. Li,C. Li,D. J. Li,F. Li,G. S. Li,J. Li,N. Y. Li,Q. J. Li,S. F. Li,S. C. Li,W. D. Li,X. B. Li,X. N. Li,X. Q. Li,Y. Li,Y. F. Li,Z. B. Li,H. Liang,J. Liang, C. J. Lin, G. L. Lin, P. Y. Lin,S. X. Lin,S. K. Lin, Y. C. Lin,J. J. Ling,J. M. Link,L. Littenberg,B. R. Littlejohn,B. J. Liu,C. Liu,D. W. Liu,H. Liu,J. L. Liu,J. C. Liu, S. Liu,S. S. Liu,X. Liu,Y. B. Liu,C. Lu, H. Q. Lu, J. S. Lu,A. Luk,K. B. Luk, T. Luo, X. L. Luo,L. H. Ma,Q. M. Ma,X. Y. Ma,X. B. Ma,Y. Q. Ma, B. Mayes,K. T. McDonald, M. C. McFarlane,R. D. McKeown,Y. Meng,I. Mitchell, D. Mohapatra,J. Monari Kebwaro, J. E. Morgan, Y. Nakajima,J. Napolitano,D. Naumov,E. Naumova, C. Newsom,H. Y. Ngai,W. K. Ngai, Y. B. Nie,Z. Ning, J. P. Ochoa Ricoux, A. Olshevskiy, A. Pagac, H. R. Pan,S. Patton,C. Pearson, V. Pec,J. C. Peng, L. E. Piilonen,L. Pinsky,C. S. J. Pun,F. Z. Qi,M. Qi,X. Qian, N. Raper,B. Ren,J. Ren, R. Rosero,B. Roskovec, X. C. Ruan, W. R. Sands Iii, B. Seilhan, B. B. Shao, K. Shih, W. Y. Song,H. Steiner,P. Stoler,M. Stuart, G. X. Sun, J. L. Sun,N. Tagg,Y. H. Tam, H. K. Tanaka,W. Tang,X. Tang, D. Taychenachev,H. Themann, Y. Torun, S. Trentalange,O. Tsai, K. V. Tsang, R. H. M. Tsang,C. E. Tull,Y. C. Tung, N. Viaux,B. Viren,S. Virostek,V. Vorobel, C. H. Wang,L. S. Wang,L. Y. Wang,L. Z. Wang,M. Wang,N. Y. Wang,R. G. Wang,T. Wang,W. Wang,W. W. Wang,X. T. Wang, X. Wang,Y. F. Wang,Z. Wang,Z. M. Wang,D. M. Webber, H. Y. Wei, Y. D. Wei,L. J. Wen,D. L. Wenman, K. Whisnant, C. G. White,L. Whitehead,C. A. Whitten Jr, J. Wilhelmi,T. Wise, H. C. Wong,H. L. H. Wong, J. Wong, S. C. F. Wong,E. Worcester,F. F. Wu,Q. Wu, D. M. Xia, J. K. Xia, S. T. Xiang,Q. Xiao, Z. Z. Xing, G. Xu,J. Y. Xu,J. L. Xu, J. Xu, W. Xu, Y. Xu,T. Xue,J. Yan, C. G. Yang,L. Yang, M. S. Yang, M. T. Yang,M. Ye,M. Yeh,Y. S. Yeh,K. Yip,B. L. Young,G. Y. Yu,Z. Y. Yu,S. Zeng,L. Zhan,C. Zhang,F. H. Zhang,H. H. Zhang,J. W. Zhang,K. Zhang,Q. X. Zhang,Q. M. Zhang,S. H. Zhang,X. T. Zhang,Y. C. Zhang,Y. H. Zhang,Y. M. Zhang,Y. X. Zhang,Z. J. Zhang,Z. Y. Zhang,Z. P. Zhang,J. Zhao, Q. W. Zhao,Y. F. Zhao,Y. B. Zhao, L. Zheng,W. L. Zhong, L. Zhou, N. Zhou,Z. Y. Zhou, H. L. Zhuang, S. Zimmerman, J. H. Zou

mag(2015)

引用 59|浏览168
暂无评分
摘要
The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $\bar{\nu}_e$ oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of $\rm{sin}^22\theta_{13}$ and the effective mass splitting $\Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes (PMTs), the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.
更多
查看译文
关键词
Muon,Neutrino,Detector,Photomultiplier,Electron,Electromagnetic shielding,Nuclear physics,Particle physics,Effective mass (solid-state physics),Physics,Daya bay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要