Hypoxic conditions alter developing branchial arch-derived structures in zebrafish

Dentistry 3000(2014)

引用 0|浏览3
暂无评分
摘要
Background: Previous epidemiological findings have implicated hypoxia as a risk factor for craniofacial defects including cleft lip, microtia and branchial arch anomalies. This study tests the hypothesis that hypoxic exposure results in craniofacial shape variation in a zebrafish model. Methods: Three sets of zebrafish embryos were raised in uniform conditions with the exception of dissolved oxygen level. At 24 hours past fertilization (hpf) embryos were placed in hypoxic conditions (70% or 50% dissolved oxygen tank water) and compared to unexposed control embryos. After 24 hours of exposure to hypoxia, the embryos were incubated under normoxia. Larvae were collected at 5 days post fertilization (dpf) and stained for cartilage. Images were taken of each specimen and subsequently landmarked to capture viscerocranial morphology. A geometric morphometric analysis was performed to compare shape variation across groups. Results: The mean branchial arch shape of each exposure group was significantly different from controls (p<0.001). Principal components analysis revealed a clear separation of the three groups, with controls at one end of the shape spectrum, the 50% hypoxia group at the other end, and the 70% hypoxia group spanning the variation in between. Conclusions: This experiment shows that hypoxia exposure at 24hpf is capable of affecting craniofacial shape in a dose-dependent manner. These results may have implications not only for high altitude fetal health, but other environments, behaviors and genes that affect fetal oxygen delivery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要