High resolution and high throughput x-ray optics for future astronomical missions

Proceedings of SPIE(2013)

引用 29|浏览8
暂无评分
摘要
X-ray optics is an essential component of every conceivable future x-ray observatory. Its astronomical utility is measured with two quantities: angular resolution and photon collecting area. The angular resolution determines the quality of its images and the photon collecting area determines the faintest sources it is capable of detecting and studying. Since it must be space-borne, the resources necessary to realize an x-ray mirror assembly, such as mass and volume, are at a premium. In this paper we report on a technology development program designed to advance four metrics that measure the capability of an x-ray mirror technology: (1) angular resolution, (2) mass per unit photon collecting area, (3) volume per unit photon collecting area, and (4) production cost per unit photon collecting area. We have adopted two approaches. The first approach uses the thermal slumping of thin glass sheets. It has advantages in mass, volume, and cost. The objective for this approach is improving its angular resolution. As of August 2013, we have been able to consistently build and test with x-ray beams modules that contain three co-aligned Wolter-I parabolic-hyperbolic mirror pairs, achieving a point spread function (PSF) of 11 arc-second half-power diameter (HPD), to be compared with the 17 arc-seconds we reported last year. If gravity distortion during x-ray tests is removed, these images would have a resolution of 9 arc-seconds, meeting requirements for a 10 arc-second flight mirror assembly. These modules have been subjected to a series of vibration, acoustic, and thermal vacuum tests. The second approach is polishing and light-weighting single crystal silicon, a material that is commercially available, inexpensive, and without internal stress. This approach has advantages in angular resolution, mass, and volume, and objective is reducing fabrication cost to make it financially feasible to fabricate the similar to 10(3) m(2) mirror area that would be required for a future major x-ray observatory. The overall objective of this technology program is to enable missions in the upcoming years with a 10 arc-second angular resolution, and missions with similar to 1 arc-second angular resolution in the 2020s.
更多
查看译文
关键词
X-ray optics,lightweight optics,glass slumping,silicon mirror,mirror alignment,mirror bonding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要