NOX2-DERIVED REACTIVE OXYGEN SPECIES CAUSES VASCULAR DYSFUNCTION IN MURINE MODEL OF ENDOTHELIAL INSULIN SENSITIVITY AND ACTIVATION OF NRF2 TRANSCRIPTION FACTOR

Heart(2013)

引用 0|浏览26
暂无评分
摘要
Introduction The escalating number of individuals suffering from Type 2 Diabetes is a significant healthcare burden, globally. A critical pathophysiological feature of type 2 diabetes is insulin resistance. It is well-established that insulin stimulates generation of the endothelium-derived anti-inflammatory/anti-atherosclerotic signalling radical, nitric oxide (NO). We investigated the hypothesis that increasing insulin sensitivity specifically, in the endothelium will lead to beneficial effects on NO bioavailability and vascular endothelial function. A novel transgenic mouse over-expressing Type A human Insulin Receptor (HIRECO) in the endothelium, driven by the Tie-2 promoter-enhancer was generated in order to explore the effects of increasing insulin signalling in the vascular bed. Methods Various tissues and pulmonary endothelial cells from the HIRECO mice were analysed using RT-PCR to confirm significant levels of human insulin receptor mRNA, while protein expression was confirmed by western blotting. Lucigenin-enhanced chemiluminescence was used to measure superoxide anion levels while; vasomotor function was assessed in thoracic aortic rings mounted in an organ bath. Results HIRECO mice demonstrated no significant morphological, metabolic phenotype or blood pressure abnormality compared to wild type (WT) littermates. Plasma insulin levels were similar following an overnight fast, but were decreased in the HIRECO after a glucose challenge. HIRECO mice exhibited significant endothelial dysfunction with a blunted response to acetylcholine (Emax, WT vs. HIRECO: 84±3% vs. 68±3% respectively, p Conclusions/Implications These data clearly suggest that enhanced oxidative stress in a novel murine model of increased endothelial insulin signalling, leads to reduced bioavailability of nitric oxide and vascular dysfunction. These data also demonstrate for the first time, that increased insulin sensitivity in the endothelium, increases the generation of free radical generation and reduces NO bioavailability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要