Ultrafast quasiparticle relaxation dynamics in superconducting iron pnictide Ca(Fe0.944Co0.056)2As2

Solid State Communications(2013)

引用 6|浏览15
暂无评分
摘要
Nonequilibrium quasiparticle relaxation dynamics is reported in superconducting Ca(Fe0.944Co0.056)2As2 single crystals by measuring transient reflectivity changes using femtosecond time-resolved pump-probe spectroscopy. Large changes in the temperature-dependent differential reflectivity values in the vicinity of the spin density wave (TSDW) and superconducting (TSC) transition temperatures of the sample have been inferred to have charge gap opening at those temperatures. We have estimated the zero-temperature charge gap value in the superconducting state to be ∼1.8kBTSC and an electron–phonon coupling constant λ of ∼0.1 in the normal state that signifies the weak coupling in iron pnictides. From the peculiar temperature-dependence of the quasiparticle dynamics in the intermediate temperature region between TSC and TSDW we infer a temperature scale where the charge gap associated with the spin ordered phase is maximum and closes on either side while approaching the two phase transition temperatures.
更多
查看译文
关键词
A. Iron pnictide,D. Superconductivity,E. Ultrafast spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要