Tensile-Strained Inxga1-Xp Membranes For Cavity Optomechanics

APPLIED PHYSICS LETTERS(2014)

引用 19|浏览6
暂无评分
摘要
We investigate the optomechanical properties of tensile-strained ternary InxGa1-xP nanomembranes grown on GaAs. This material system combines the benefits of highly strained membranes, similar to those based on stoichiometric silicon nitride, with the unique properties of thin-film semiconductor single crystals, as previously demonstrated with suspended GaAs. Here, we employ lattice mismatch in epitaxial growth to impart an intrinsic tensile strain to a monocrystalline thin film (approximately 30 nm thick). These structures exhibit mechanical quality factors of 2 x 10(6) or beyond at room temperature and 17 K for eigenfrequencies up to 1 MHz, yielding Q x f products of 2 x 10(12) Hz for a tensile stress of similar to 170MPa. Incorporating such membranes in a high-finesse Fabry-Perot cavity, we extract an upper limit to the total optical loss (including both absorption and scatter) of 40 ppm at 1064nm and room temperature. Further reductions of the In content of this alloy will enable tensile stress levels of 1GPa, with the potential for a significant increase in the Q x f product, assuming no deterioration in the mechanical loss at this composition and strain level. This materials system is a promising candidate for the integration of strained semiconductor membrane structures with low-loss semiconductor mirrors and for realizing stacks of membranes for enhanced optomechanical coupling. (C) 2014 AIP Publishing LLC.
更多
查看译文
关键词
physics,optics,condensed matter,quantum physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要