Pt Metallization Of Laser Transformed Medical Grade Silicone Rubber: Last Step Toward A Miniaturized Nerve Electrode Fabrication Process

JOURNAL OF APPLIED PHYSICS(2009)

引用 11|浏览4
暂无评分
摘要
Chronic nerve recording and stimulation became possible through the use of implanted electrodes cuffs. In particular, self-sizing spiral electrode cuffs limit mechanical damage to the tissue: these have been shown to be suitable for long term implantation in animal and in man. However, up to now, such electrode cuffs were handmade and were hardly reproducible. They possessed a small number of electrodes (dot contacts), each being linked to its own wire. In order to improve the selectivity of nerve recording and/or stimulation (functional electrical stimulation), the numbers of electrodes and tracks have to be increased within the same electrode cuff surface. To fulfill this requirement, we have developed a fabrication process that uses an UV laser to induce surface modification, which activates the silicone rubber and is used with a mask to give high definition tracks and electrodes. After this primary step, silicone rubber is immersed in a Pt autocatalytic bath leading to a selective Pt metallization of the laser activated tracks and electrodes. We report our process as well as the results on the Pt metallization, including its morphology, how the DC resistance of Pt tracks depends on the laser used and the irradiation conditions, and also the electrical resistance of Pt tracks submitted to Scotch tape tests or to imposed strains. We show that (i) the type of laser and the irradiation conditions have a strong influence on the nucleation and growth rate of platinum and thus on the DC resistance of the tracks, (ii) the tracks of width 400 mu m and thickness 10 mu m have a sheet resistivity of 0.2 Omega/sq, (iii) DC resistance does not change much during a 6 month soak in saline, (iv) strains above 2% breaks the track continuity, and (v) when strains below 53% are relaxed, the DC resistance returns to a low value. This recovery from large tensile strains means that nerve cuffs with such metallization could be handled by the surgeon without great care before and during implantation. (C) 2009 American Institute of Physics. [doi:10.1063/1.3236509]
更多
查看译文
关键词
electrical resistance,surface modification,tensile strength
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要