Insights Into Thermal Diffusion Of Germanium And Oxygen Atoms In Hfo2/Geo2/Ge Gate Stacks And Their Suppressed Reaction With Atomically Thin Alox Interlayers

JOURNAL OF APPLIED PHYSICS(2015)

引用 17|浏览5
暂无评分
摘要
The thermal diffusion of germanium and oxygen atoms in HfO2/GeO2/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that O-18-tracers composing the GeO2 underlayers diffuse within the HfO2 overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO2 also proceeded at the low temperatures of around 200 degrees C, the diffusing germanium atoms preferentially segregated on the HfO2 surfaces, and the reaction was further enhanced at high temperatures with the assistance of GeO desorption. A technique to insert atomically thin AlOx interlayers between the HfO2 and GeO2 layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks. (C) 2015 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要