Reversible and irreversible effects after oxygen exposure in thick (>1 μm) silicon films deposited by VHF-PECVD on glass substrates investigated by dual beam photoconductivity1

Yilmazgokhan,Canseverhamza,Sagbanh Muzaffer,Gunesmehmet,Smirnovvladimir, Fingerfriedhelm, Bruggemannrudi

Canadian Journal of Physics(2014)

引用 3|浏览3
暂无评分
摘要
Metastability and instability effects due to oxygen exposure in thick intrinsic hydrogenated microcrystalline silicon films deposited by very high frequency plasma enhanced chemical vapour deposition on smooth glass substrates were investigated using temperature-dependent dark conductivity, steady state photoconductivity, and sub-bandgap absorption measurements obtained using the dual beam photoconductivity (DBP) method. No significant changes in dark conductivity and photoconductivity were detected even after long-term air exposure of samples in room ambient as well as after oxygen exposure when samples were characterized in oxygen ambient. However, characterization of the oxygen-exposed state in high vacuum caused an increase in dark conductivity and photoconductivity as well as a significant decrease in the sub-bandgap absorption coefficient spectra in the low energy region in samples with I-C(RS) > 0.40. These changes are partially irreversible for samples I-C(RS) > 0.80 and mostly reversible for compact materials with significant amorphous fraction. No detectable metastable changes occurred in microcrystalline silicon samples with I-C(RS) < 0.40 as well as in pure amorphous silicon.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要