Multistatic Reluctance Network Modeling For The Design Of Permanent-Magnet Synchronous Machines

IEEE TRANSACTIONS ON MAGNETICS(2013)

引用 15|浏览6
暂无评分
摘要
This paper deals with an original design methodology of permanent-magnet synchronous machines using multistatic reluctance-network (RN) modeling. Traditionally, RN models are based on using d-q axis components in order to calculate the fundamental values of the torque and the back-electromotive force (emf). In this study, the RN permits an angular rotation between the rotor and stator to thereby extract the magnitude of the harmonics which are necessary for better optimization results. Besides, three different methods of calculation of the air-gap reluctances are presented and applied to the RN. Then, simulation results are compared to finite-element analysis (FEA) in order to finally determine the best method. Ultimately, the proposed model shows precise and very fast results making it suitable for geometry optimization and to help designers obtain a better sense of machine behavior.
更多
查看译文
关键词
Back-electromotive force (emf), harmonics, permanent-magnet synchronous machine (PMSM), reluctance network (RN), torque ripple
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要