Coupled electro-mechanical properties of multiwall carbon nanotube/polypropylene composites for strain sensing applications

O. Zetina-Hernández,S. Duarte-Aranda, A. May-Pat, G. Canché-Escamilla,J. Uribe-Calderon, P. I. Gonzalez-Chi,F. Avilés

Journal of Materials Science(2013)

引用 38|浏览5
暂无评分
摘要
The electrical, mechanical, and coupled electro-mechanical (piezoresistive) properties of multiwall carbon nanotube/polypropylene (MWCNT/PP) composites at four MWCNT concentrations above electrical percolation (4–10 wt %) were investigated. The electrical conductivity of the composite increased monotonically from 0.77 to 15.0 S/m with the increase of MWCNT concentration. The elastic modulus also increased monotonically with increased MWCNT concentration with the concomitant reduction of ultimate strain. The coupled signal between electrical resistance and applied strain during tensile loading displayed a marked change toward higher sensitivity at the elastic-to-plastic transition zone of the polymer composite, which allowed the identification of polymer yielding by the sole monitoring of electrical resistance. Large ratios (of the order of 15–29) of normalized changes in electrical resistance over applied strain (“gage factor”) were found in the plastic zone, and such electro-mechanical sensitivity was higher for composites with lower MWCNT content.
更多
查看译文
关键词
Applied Strain, Gage Factor, MWCNT Content, Electrical Percolation, MWCNT Concentration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要