Lower-Bound Analysis of Fiber-Reinforced Polymeric Laminated Cylindrical Shells

AIAA JOURNAL(2013)

引用 7|浏览2
暂无评分
摘要
The imperfection-sensitive buckling of fiber-reinforced polymeric laminated shells is complicated by the large number of additional material and geometric parameters compared to the buckling of conventional metallic shells. As a basis for conceptual design, the traditional lower-bound approach of relying upon scatter of test results is no longer feasible when it comes to the buckling design of fiber-reinforced polymeric laminated shells. This study aimed to extend an analytical approach, the so-called reduced-stiffness method, to the lower-bound buckling analysis of fiber-reinforced polymeric laminated cylindrical shells under uniform axial compression. For a range of isotropic shells, the reduced-stiffness method has been shown capable of predicting safe lower bounds to experimental and numerical studies of imperfection-sensitive buckling loads. In this paper, the validity of the reduced-stiffness method applied to fiber-reinforced polymeric laminated cylindrical shells is verified by the nonlinear-buckling analysis performed using the finite element software ABAQUS/Standard. Through several case studies, it is suggested that the reduced-stiffness method offers an important alternative for improved prediction of lower-bound buckling loads in the design of fiber-reinforced polymeric laminated shells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要