A Novel Data-Driven Fault Diagnosis Algorithm Using Multivariate Dynamic Time Warping Measure

Abstract and Applied Analysis(2014)

引用 3|浏览4
暂无评分
摘要
Process monitoring and fault diagnosis (PM-FD) has been an active research field since it plays important roles in many industrial applications. In this paper, we present a novel data-driven fault diagnosis algorithm which is based on the multivariate dynamic time warping measure. First of all, we propose a Mahalanobis distance based dynamic time warping measure which can compute the similarity of multivariate time series (MTS) efficiently and accurately. Then, a PM-FD framework which consists of data preprocessing, metric learning, MTS pieces building, and MTS classification is presented. After that, we conduct experiments on industrial benchmark of Tennessee Eastman (TE) process. The experimental results demonstrate the improved performance of the proposed algorithm when compared with other classical PM-FD classical methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要