Ethanol Steam Reforming in a Two-Step Process. Short-Time Feasibility Tests

ENERGY & FUELS(2013)

引用 5|浏览2
暂无评分
摘要
This paper describes a two-step process for hydrogen generation consisting of low-temperature (573 K) dehydrogenation of ethanol over copper chromite, followed by steam reforming (SR) over Ni/MgO at higher temperature (923 K). Advantages compared to direct SR of ethanol comprise suppression of coke formation. Water also moderates the rate of reduction of copper and promotes the stability of copper chromite at temperatures below 673 K. The two-step process requires a quantity of catalyst for the low-temperature step in excess of that for the high-temperature SR catalyst in order to ensure adequate conversion levels of ethanol in the first step.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要