Comparison of four outdoor pilot-scale photobioreactors

Biotechnology for Biofuels(2015)

引用 151|浏览15
暂无评分
摘要
Background Microalgae are a potential source of sustainable commodities of fuels, chemicals and food and feed additives. The current high production costs, as a result of the low areal productivities, limit the application of microalgae in industry. A first step is determining how the different production system designs relate to each other under identical climate conditions. The productivity and photosynthetic efficiency of Nannochloropsis sp. CCAP 211/78 cultivated in four different outdoor continuously operated pilot-scale photobioreactors under the same climatological conditions were compared. The optimal dilution rate was determined for each photobioreactor by operation of the different photobioreactors at different dilution rates. Results In vertical photobioreactors, higher areal productivities and photosynthetic efficiencies, 19–24 g m −2 day −1 and 2.4–4.2 %, respectively, were found in comparison to the horizontal systems; 12–15 g m −2 day −1 and 1.5–1.8 %. The higher ground areal productivity in the vertical systems could be explained by light dilution in combination with a higher light capture. In the raceway pond low productivities were obtained, due to the long optical path in this system. Areal productivities in all systems increased with increasing photon flux densities up to a photon flux density of 30 mol m −2 day −1 . Photosynthetic efficiencies remained constant in all systems with increasing photon flux densities. The highest photosynthetic efficiencies obtained were; 4.2 % for the vertical tubular photobioreactor, 3.8 % for the flat panel reactor, 1.8 % for the horizontal tubular reactor, and 1.5 % for the open raceway pond. Conclusions Vertical photobioreactors resulted in higher areal productivities than horizontal photobioreactors because of the lower incident photon flux densities on the reactor surface. The flat panel photobioreactor resulted, among the vertical photobioreactors studied, in the highest average photosynthetic efficiency, areal and volumetric productivities due to the short optical path. Photobioreactor light interception should be further optimized to maximize ground areal productivity and photosynthetic efficiency.
更多
查看译文
关键词
Areal productivity,Microalgae,Nannochloropsis sp.,Outdoor,Photobioreactors,Photosynthetic efficiency,Pilot-scale
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要