First CpG island microarray for genome-wide analyses of DNA methylation in Chinese hamster ovary cells: new insights into the epigenetic answer to butyrate treatment

BMC Proceedings(2013)

引用 1|浏览11
暂无评分
摘要
Background Optimizing productivity and growth of recombinant Chinese hamster ovary (CHO) cells requires insight and intervention in regulatory processes. This is to some extent accomplished by several ‘omics’ approaches. However, many questions remain unanswered and bioprocess development is therefore still partially empirical. In this regard, the analysis of DNA methylation as one of the earliest cellular regulatory levels is increasingly gaining importance. This epigenetic process is known to influence transcriptional events when it occurs at specific genomic regions with high CpG frequencies, called CpG islands (CGIs). Being methylated, CGIs attract proteins with methyl-DNA binding domains (MBD proteins) that in turn can interact with chromatin modifying complexes, thereby leading to a transcriptionally inactive state of the associated gene [1]. In CHO cells, DNA methylation has yet only been investigated in gene-specific approaches, e.g. regarding the CMV promoter [2]. To analyze differential DNA methylation in CHO cultures on a genomic scale, we developed a microarray covering 19,598 CGIs in the CHO genome. We applied it to elucidate the effect of butyrate on CHO DP-12 cultures, as this short chain fatty acid (SCFA) is known to elicit epigenetic responses by inhibiting histone-deacetylases [3].
更多
查看译文
关键词
bioinformatics,biomedical research
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要