Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria.

Biosensors & bioelectronics(2016)

引用 103|浏览6
暂无评分
摘要
Rapid and sensitive detection of bacterial pathogens is critical for assessing public health, food and environmental safety. We report the use of modularly designed and site-specifically oriented synthetic antimicrobial peptides (sAMPs) as novel recognition agents enabling detection and quantification of bacterial pathogens. The oriented assembly of the synthetic peptides on electrode surfaces through an engineered cysteine residue coupled with impedimetric detection facilitated rapid and sensitive detection of bacterial pathogens with a detection limit of 10(2)CFU/mL for four bacterial strains including Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). The approach enabled differentiation between live and dead bacteria. The fabrication of the sAMPs functionalized surface and the importance of the sAMPs orientation for providing optimum recognition and detection ability against pathogens are discussed. The proposed methodology provides a universal platform for the detection of bacterial pathogens based on engineered peptides, as alternative to the most commonly used immunological and gene based assays. The method can also be used to fabricate antimicrobial coatings and surfaces for inactivation and screening of viable bacteria.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要