Logarithmic Mean Temperature Profiles and Their Connection to Plume Emissions in Turbulent Rayleigh-Bénard Convection.

PHYSICAL REVIEW LETTERS(2015)

引用 35|浏览1
暂无评分
摘要
Two-dimensional simulations of Rayleigh-Benard convection at Ra = 5 x 10(10) show that vertical logarithmic mean temperature profiles can be observed in regions of the boundary layer where thermal plumes are emitted. The profile is logarithmic only in these regions and not in the rest of the boundary layer where it is sheared by the large-scale wind and impacted by plumes. In addition, the logarithmic behavior is not visible in the horizontal average. The findings reveal that the temperature profiles are strongly connected to thermal plume emission, and they support a perception that parts of the boundary layer can be turbulent while others are not. The transition to the ultimate regime, in which the boundary layers are considered to be fully turbulent, can therefore be understood as a gradual increase in the fraction of the plume-emitting ("turbulent") regions of the boundary layer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要