Inhibition of Intestinal Bile Acid Absorption Improves Cholestatic Liver and Bile Duct Injury in a Mouse Model of Sclerosing Cholangitis.

Journal of Hepatology(2016)

引用 141|浏览13
暂无评分
摘要
Background and Aims Approximately 95% of bile acids (BAs) excreted into bile are reabsorbed in the gut and circulate back to the liver for further biliary secretion. Therefore, pharmacological inhibition of the ileal apical sodium-dependent BA transporter (ASBT/SLC10A2) may protect against BA-mediated cholestatic liver and bile duct injury. Methods Eight week old Mdr2 −/− ( Abcb4 −/− ) mice (model of cholestatic liver injury and sclerosing cholangitis) received either a diet supplemented with A4250 (0.01% w/w) – a highly potent and selective ASBT inhibitor – or a chow diet. Liver injury was assessed biochemically and histologically after 4weeks of A4250 treatment. Expression profiles of genes involved in BA homeostasis, inflammation and fibrosis were assessed via RT-PCR from liver and ileum homogenates. Intestinal inflammation was assessed by RNA expression profiling and immunohistochemistry. Bile flow and composition, as well as biliary and fecal BA profiles were analyzed after 1week of ASBT inhibitor feeding. Results A4250 improved sclerosing cholangitis in Mdr2 −/− mice and significantly reduced serum alanine aminotransferase, alkaline phosphatase and BAs levels, hepatic expression of pro-inflammatory ( Tnf-α, Vcam1 , Mcp-1 ) and pro-fibrogenic ( Col1a1 , Col1a2 ) genes and bile duct proliferation (mRNA and immunohistochemistry for cytokeratin 19 (CK19)). Furthermore, A4250 significantly reduced bile flow and biliary BA output, which correlated with reduced Bsep transcription, while Ntcp and Cyp7a1 were induced. Importantly A4250 significantly reduced biliary BA secretion but preserved HCO 3 − and biliary phospholipid secretion resulting in an increased HCO 3 − /BA and PL/BA ratio. In addition, A4250 profoundly increased fecal BA excretion without causing diarrhea and altered BA pool composition, resulting in diminished concentrations of primary BAs tauro-β-muricholic acid and taurocholic acid. Conclusions Pharmacological ASBT inhibition attenuates cholestatic liver and bile duct injury by reducing biliary BA concentrations in mice.
更多
查看译文
关键词
Sodium-dependent BA transporter (ASBT/SLC10A2),Sclerosing,Cholangitis,Liver and bile duct injury
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要