Polygenic inheritance of cryptorchidism susceptibility in the LE/orl rat.

MOLECULAR HUMAN REPRODUCTION(2016)

引用 9|浏览31
暂无评分
摘要
STUDY HYPOTHESIS: Susceptibility to inherited cryptorchidism in the LE/orl rat may be associated with genetic loci that influence developmental patterning of the gubernaculum by the fetal testis. STUDY FINDING: Cryptorchidism in the LE/orl rat is associated with a unique combination of homozygous minor alleles at multiple loci, and the encoded proteins are co-localized with androgen receptor (AR) and Leydig cells in fetal gubernaculum and testis, respectively. WHAT IS KNOWN ALREADY: Prior studies have shown aberrant perinatal gubernacular migration, muscle patterning defects and reduced fetal testicular testosterone in the LE/orl strain. In addition, altered expression of androgen-responsive, cytoskeletal and muscle-related transcripts in the LE/orl fetal gubernaculum suggest a role for defective AR signaling in cryptorchidism susceptibility. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: The long-term LE/orl colony and short-term colonies of outbred Crl:LE and Crl: SD, and inbred WKY/Ncrl rats were maintained for studies. Animals were intercrossed (LE/orl X WKY/Ncrl), and obligate heterozygotes were reciprocally backcrossed to LE/orl rats to generate 54 F-2 males used for genotyping and/or linkage analysis. At least five fetuses per gestational time point from two or more litters were used for quantitative real-time RT-PCR(qRT-PCR) and freshly harvested embryonic (E) day 17 gubernaculum was used to generate conditionally immortalized cell lines. We completed genotyping and gene expression analyses using genome-wide microsatellite markers and single nucleotide polymorphism (SNP) arrays, PCR amplification, direct sequencing, restriction enzyme digest with fragment analysis, whole genome sequencing (WGS), and qRT-PCR. Linkage analysis was performed in Haploview with multiple testing correction, and qRT-PCR data were analyzed using ANOVA after log transformation. Imaging was performed using custom and commercial antibodies directed at candidate proteins in gubernaculum and testis tissues, and gubernaculum cell lines. MAIN RESULTS AND THE ROLE OF CHANCE: LE/orl rats showed reduced fertility and fecundity, and higher risk of perinatal death as compared with Crl: LE rats, but there were no differences in breeding outcomes between normal and unilaterally cryptorchid males. Linkage analysis identified multiple peaks, and with selective breeding of outbred Crl: LE and Crl: SD strains for alleles within two of the most significant (P< 0.003) peaks on chromosomes 6 and 16, we were able to generate a non-LE/orl cryptorchid rat. Associated loci contain potentially functional minor alleles (0.25-0.36 in tested rat strains) including an exonic deletion in Syne2, a large intronic insertion in Ncoa4 (an AR coactivator) and potentially deleterious variants in Solh/Capn15, Ankrd28, and Hsd17b2. Existing WGS data indicate that homozygosity for these combined alleles does not occur in any other sequenced rat strain. We observed a modifying effect of the Syne2(del) allele on expression of other candidate genes, particularly Ncoa4, and for muscle and hormone-responsive transcripts. The selected candidate genes/proteins are highly expressed, androgen-responsive and/or co-localized with developing muscle and AR in fetal gubernaculum, and co-localized with Leydig cells in fetal testis. LIMITATIONS, REASONS FOR CAUTION: The present study identified multiple cryptorchidism-associated linkage peaks in the LE/orl rat, containing potentially causal alleles. These are strong candidate susceptibility loci, but further studies are needed to demonstrate functional relevance to the phenotype. WIDER IMPLICATIONS OF THE FINDINGS: Association data from both human and rat models of spontaneous, nonsyndromic cryptorchidism support a polygenic etiology of the disease. Both the present study and a human genome-wide association study suggest that common variants with weak effects contribute to susceptibility, and may exist in genes encoding proteins that participate in AR signaling in the developing gubernaculum. These findings have potential implications for the gene-environment interaction in the etiology of cryptorchidism.
更多
查看译文
关键词
cryptorchidism,genetics,gubernaculum,whole genome sequencing,linkage analysis,rat strains
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要