Zinc promotes clot stability by accelerating clot formation and modifying fibrin structure.

THROMBOSIS AND HAEMOSTASIS(2016)

引用 38|浏览36
暂无评分
摘要
Zinc released from activated platelets binds fibrin(ogen) and attenuates fibrinolysis. Although zinc also affects clot formation, the mechanism and consequences are poorly understood. To address these gaps, the effect of zinc on clot formation and structure was examined in the absence or presence of factor (F) XIII. Zinc accelerated a) plasma clotting by 1.4-fold, b) fibrinogen clotting by 3.5-and 2.3-fold in the absence or presence of FXIII, respectively, c) fragment X clotting by 1.3-fold, and d) polymerisation of fibrin monomers generated with thrombin or batroxobin by 2.5-and 1.8-fold, respectively. Whereas absorbance increased up to 3.3-fold when fibrinogen was clotted in the presence of zinc, absorbance of fragment X clots was unaffected by zinc, consistent with reports that zinc binds to the alpha C-domain of fibrin(ogen). Scanning electron microscopic analysis revealed a two-fold increase in fibre diameter in the presence of zinc and in permeability studies, zinc increased clot porosity by 30-fold with or without FXIII. Whereas FXIII increased clot stiffness from 128 +/- 19 Pa to 415 +/- 27 Pa in rheological analyses, zinc reduced clot stiffness by 10- and 8.5-fold in the absence and presence of FXIII, respectively. Clots formed in the presence of zinc were more stable and resisted rupture with or without FXIII. Therefore, zinc accelerates clotting and reduces fibrin clot stiffness in a FXIII-independent manner, suggesting that zinc may work in concert with FXIII to modulate clot strength and stability.
更多
查看译文
关键词
Zinc,fibrinogen,fibrin,FXIII,clot structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要