Oxidative Stress, Cytotoxicity, and Genotoxicity Induced by Methyl Parathion in Human Gingival Fibroblasts: Protective Role of Epigallocatechin-3-Gallate.

JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES(2015)

引用 18|浏览2
暂无评分
摘要
Organophosphorous (OP) compounds are pesticides frequently released into the environment because of extensive use in agriculture. Among these, methyl parathion (mPT) recently received attention as a consequence of illegal use. The predominant route of human exposure to mPT is via inhalation, but inadvertent consumption of contaminated foods and water may also occur. The goal of this study was to investigate the in vitro effects of mPT on cells in the oral cavity and evaluate the potential protective role of epigallocathechin-3-gallate (EGCG) on these effects. Human gingival fibroblasts (HGF) were exposed to 10, 50, or 100 g/ml mPT for 24 h and assessed for oxidative stress, as evidenced by reactive generation of oxygen species (ROS), induction of apoptotic cell death, DNA damage (comet assay and cytochinesis-block micronucleus test), and nitric oxide (NO) production. The results showed that mPT produced significant oxidative stress, cytotoxicity, and genotoxicity and increased NO levels through stimulation of inducible NO synthase expression. Finally, data demonstrated that EGCG (10, 25, or 50 M) was able to inhibit the pesticide-induced effects on all parameters studied. Data indicate that cytotoxic and genotoxic effects may be associated with oxidative stress induced by mPT observed in HGF cultures and that EGCG plays a protective role via antioxidant activities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要