Characterization and protective efficacy in an animal model of a novel truncated rotavirus VP8 subunit parenteral vaccine candidate.

Vaccine(2015)

引用 22|浏览20
暂无评分
摘要
The cell-attachment protein VP8* of rotavirus is a potential candidate parenteral vaccine. However, the yield of full-length VP8 protein (VP8*, residues 1-231) expressed in Escherichia coli was low, and a truncated VP8 protein (ΔVP8*, residues 65-231) cannot elicit efficient protective immunity in a mouse model. In this study, tow novel truncated VP8 proteins, VP8-1 (residues 26-231) and VP8-2 (residues 51-231), were expressed in E. coli and evaluated for immunogenicity and protective efficacy, compared with VP8* and ΔVP8*. As well as ΔVP8*, the protein VP8-1 and VP8-2 were successfully expressed in high yield and purified in homogeneous dimeric forms, while the protein VP8* was expressed with lower yield and prone to aggregation and degradation in solution. Although the immunogenicity of the protein VP8*, VP8-1, VP8-2 and ΔVP8* was comparable, immunization of VP8* and VP8-1 elicited significantly higher neutralizing antibody titers than that of VP8-2 and ΔVP8* in mice. Furthermore, when assessed using a mouse maternal antibody model, the efficacy of VP8-1 to protect against rotavirus-induced diarrhea in pups was comparable to that of VP8*, both were dramatically higher than that of VP8-2 and ΔVP8*. Taken together, the novel truncated protein VP8-1, with increased yield, improved homogeneity and high protective efficacy, is a viable candidate for further development of a parenterally administrated prophylactic vaccine against rotavirus infection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要