Selective And Reversible Binding Of Thiol-Functionalized Biomolecules On Polymers Prepared Via Chemical Vapor Deposition Polymerization

LANGMUIR(2015)

引用 17|浏览4
暂无评分
摘要
We use chemical vapor deposition polymerization to prepare a novel dibromomaleimide-functionalized polymer for selective and reversible binding of thiol-containing biomolecules on a broad range of Substrates. We report the synthesis and CVD polymerization of 4-(3,4-dibromomaleimide)[2.2]paracyclophane to yield nanometer thick polymer coatings. Fourier transformed infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the chemical composition of the polymer coating. The reactivity of the polymer coating toward thiol-functionalized molecules was confirmed using fluorescent ligands. As a proof of concept, the binding and subsequent release of cysteine-modified peptides from the polymer coating were also demonstrated via sum frequency generation spectroscopy. This reactive polymer coating provides a flexible surface modification approach to selectively and reversibly bind biomolecules on a broad range of materials, which Could open up new opportunities in many biomedical sensing and diagnostic applications where specific binding and release of target analytes are desired.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要